skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weng, Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In 2019, a National Research Traineeship (NRT) grant from the U.S. National Science Foundation seeded the establishment of a new model for graduate education at Ohio State University – a large, public, land-grant R-1 university in the U.S. Midwest. This grant application involved faculty from eight different colleges within this university (education; engineering; public affairs; arts and sciences; food, agriculture, and environmental sciences; business; law). The Ohio State EmPOWERment Program in convergent graduate training for a sustainable energy future enrolls Ph.D. students studying any aspect of energy from degree programs any college in Ohio State and engages them in several curricular and co-curricular elements that are designed to dovetail with their Ph.D. degree program requirements in ways that do not extend their time to graduate. The Ohio State EmPOWERment Program established at Ohio State an energy Student Community of Practice and Engagement (SCOPE), a Graduate Interdisciplinary Specialization (GIS), and an undergraduate Research in Sustainable Energy (RISE) summer research experience. Over time a JOULE energy seminar series (JOULE) was added to elevate intellectual engagement in for trainees in The Ohio State EmPOWERment Program and broaden their engagement with researchers across this university. This paper investigates the development and accentuation of innovation capacities of Ph.D. trainees in The Ohio State EmPOWERment Program relative to other Ph.D. students who enrolled in science, technology, engineering, and math (STEM) disciplines at Ohio State and did not participate in the Ohio State EmPOWERment Program. This work considers three different constructs for each of three scales (i.e., Interpersonal, Intrapersonal, Cognitive). Of the nine different constructs, six pass assumption tests and pre-test scores for innovation self-concept, proactivity, social networking, risk-taking or tolerance, creative capacity, and intention to innovate are significant predictors of post-test capacities. Overall, participating in The Ohio State EmPOWERment Program appears to be beneficial and may increase innovation self-concept, proactivity, creative, and intention to innovate capacities. 
    more » « less
  2. Abstract Human induced pluripotent stem cell (iPSC)-derived liver organoids serve as models of organogenesis, disease, drug screening, and regenerative medicine. Prevailing methods for generating organoids rely on Matrigel, whose batch-to-batch variability and xenogeneic source pose challenges to mechanistic research and translation to human clinical therapy. In this report, we demonstrate that self-assembled Matrigel-free iPSC-derived organoids developed in rotating wall vessels (RWVs) exhibit greater hepatocyte-specific functions than organoids formed on Matrigel. We show that RWVs produce highly functional liver organoids in part by eliminating the need for Matrigel, which has adverse effects on hepatic lineage differentiation. RWV liver organoids sustain durable function over long-term culture and express a range of mature functional genes at levels comparable to adult human liver, while retaining some fetal features. Our results indicate that RWVs provide a simple and high-throughput way to generate Matrigel-free liver organoids suitable for research and clinical applications. 
    more » « less